Combining Autonomous Vehicles and Controlled Events in Driving Simulator Experiments

Johan Olstam
• Driver behavior studies & driving simulators
• Surrounding traffic in driving simulators
• The play preparation problem
• The ideas behind the algorithm
• Test in the VTI Driving simulator
• Conclusions and future research
Driving behavior experiments

- Used to assess hypothesis
- Studying driver behavior in a specific context
- Follows traditional experimental design
- Limiting confounding variables is difficult

Can be conducted in
- Real world
- Test tracks
- Driving simulators

Combining autonomous vehicles and controlled...

Johan Olstam
Driving Simulators

Safe and controlled experiments concerning e.g.

- Alcohol, medicines and drugs
- Driving with disabilities
- Technical systems (ADAS, IVIS, NOMAD, …)
- Fatigue
- Vehicle and road design

Combining autonomous vehicles and controlled...

Johan Olstam
Two types of surrounding vehicles

”Fully controlled”
No own initiatives
“Enslaved”
Detailed instructions
Low driving skills

”Fully Autonomous”
Own initiatives/goals
React on the surroundings
No/few instructions
High driving skills
Driver behavior experiments

Real world/Actual experiment

As in actual driving but:
- More controllable
- Safer

"Fully" controlled driving simulator experiment

"Fully" autonomous driving simulator experiment

to get reproducibility

"Fully" controlled driving simulator experiment

Price is level of complexity & generalizibility

Increase complexity

Combining autonomous vehicles and controlled...

Johan Olstam
The parts of a driving simulator Scenario

- Everyday life driving
- Preparations for directed Plays
- Directed Plays

Combining autonomous vehicles and controlled...

Johan Olstam
The play preparation problem

Create a pre-specified situation from an unknown traffic situation in a non-conspicuous way

Consists of:

• Casting of roles
• Transportation of actors (with roles) to the stage
• Transportation of actors (without roles) from the stage

Combining autonomous vehicles and controlled...

Johan Olstam
Aims

• test if the algorithm is able to reconstruct equal play start conditions for each participant in a non conspicuous way

• test if the type of traffic (autonomous or controlled) during the everyday life driving affects the participants’ driving behavior and/or experience of the drive.
Combining autonomous vehicles and controlled...

Johan Olstam
The participants

- 10 participants, in-house VTI personnel

<table>
<thead>
<tr>
<th>Participant number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>F</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>Age</td>
<td>36</td>
<td>37</td>
<td>53</td>
<td>50</td>
<td>60</td>
<td>29</td>
<td>43</td>
<td>58</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>Years with license</td>
<td>18</td>
<td>20</td>
<td>32</td>
<td>32</td>
<td>41</td>
<td>11</td>
<td>23</td>
<td>32</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Mileage last year</td>
<td>1000</td>
<td>1200</td>
<td>1500</td>
<td>500</td>
<td>1000</td>
<td>3000</td>
<td>1500</td>
<td>1600</td>
<td>300</td>
<td>1000</td>
</tr>
<tr>
<td># of drives in simulator</td>
<td>0</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Desired speed</td>
<td>115</td>
<td>125</td>
<td>120</td>
<td>110-120</td>
<td>110-120</td>
<td>120</td>
<td>120</td>
<td>110</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>
Analyze method

• Comparing specified and achieved relative speed and position
• Mean free speed analyses
• Questionnaire
• Interviews
Participant’s mean free speed

<table>
<thead>
<tr>
<th>Participant number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled – Warm up</td>
<td>1.22</td>
<td>0.91</td>
<td>2.11</td>
<td>1.64</td>
<td>0.44</td>
<td>0.85</td>
<td>-0.04</td>
<td>0.04</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>Controlled – Autonomous 1</td>
<td>0.80</td>
<td>0.99</td>
<td>2.70</td>
<td>1.66</td>
<td>1.52</td>
<td>1.18</td>
<td>0.84</td>
<td>0.06</td>
<td>0.16</td>
<td>0.27</td>
</tr>
<tr>
<td>Controlled – Autonomous 2</td>
<td>1.76</td>
<td>1.48</td>
<td>4.28</td>
<td>1.76</td>
<td>1.36</td>
<td>1.00</td>
<td>2.93</td>
<td>0.05</td>
<td>-0.32</td>
<td>0.61</td>
</tr>
<tr>
<td>Controlled – Autonomous 3</td>
<td>1.39</td>
<td>1.72</td>
<td>4.64</td>
<td>2.01</td>
<td>1.24</td>
<td>1.20</td>
<td>0.34</td>
<td>0.40</td>
<td>-0.19</td>
<td>2.28</td>
</tr>
</tbody>
</table>

The participants drive faster during controlled everyday life traffic!
• No observed conspicuous actions in connection with plays
• Overtaking situations during controlled everyday life traffic was not normal
• The autonomous traffic is driving slow
Conclusions

- Casting and transportation of active roles works satisfactory.
- Casting and transportation of no-roles do not always work as intended.
- Type of controlled everyday life traffic matters!
- Autonomous everyday life traffic observed as slower than real freeway traffic.
Future research

- Tests in more dense traffic
- Test in “real” driving simulator experiment
- Algorithm development for other road types (two-lane highways, urban, etc)