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Summary: 
This communication concerns numbers and how to use them in scientific processes and terms. 
Naturally the number has a history of its own, as do the disciplines that use it with success 
and  to good purpose, while there are others, drawn by such success, that are affected by 
number appeal  and demonstrate a recurrent form of mimetism.  
However, the number is too rich and precious a tool for its rules and properties to be ignored. 
This exposé deals with the “theory of measurement” and attempts to clarify the rules of 
numerical assignment to observations and other entities, including many concepts that belong 
to the sphere of the human sciences. The method of successive intervals is one application of 
measurement to the case of responses collected according to ordered categories of scales. It is 
then presented by way of two applications in scientific research related to transport, i.e. 
comfort in ergonomics and nuisance due to noise. 
 
 
 
 
English version in the published Congress Proceedings. 
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I - Introduction. 
 

Current observations show that the number and numerical methods of expression are used in 
the terms and results of several scientific disciplines, especially for statistical treatments and 
when seeking “laws”. Consequently, the use of the number has sometimes become standard 
practice and conformity with the rules of calculation is not always respected. This 
presentation seeks to stir awareness of the subject and of the precautions that must be taken 
when choosing to express oneself by using the panoply of numerical tools. The presentation 
will be concluded with examples of comfort and ergonomics of car interior (Wang & 
Maurin), and transport generated noise annoyance in the framework of indicators of impacts 
caused by nuisances (Maurin 2003 a).  
 
 
II - Science and the number. 
It seems appropriate to start with a few historical reminders, including one from Galileo (Il 
Saggiatore), who stated that “The language of nature is mathematics” at a time, it should be 
emphasised, when mathematics was in its infancy. It has also become traditional practice to 
state that many others have used this aphorism since (Lévy-Leblond). 
 
II.1 - A little history and the place of the number. 
Going back even further in time, the Bible not only includes the Gospel of Saint John, which 
starts with the well-known “In the beginning was the word”, there is also the “Book of 
Numbers” of the Pentateuch at the beginning of the Old Testament, and even before the first 
night after the creation of the sky and earth, then the second, etc. until the seventh day, the 
day of rest. 
This clearly shows that the number with its associated mathematical universe is a component 
that man has used since the beginning of his history. On reading Herodotus (or Proclus, 
(Guilbaud)) we return to the creation (or discovery) of geo-metry whose role was to stake out 
land every time the floods of the Nile subsided. Both the Rhind Papyrus and the Tablets of 
Hammourabi date from about 1800 BC and Thales (500 BC) was considered as the first to 
apply demonstrative reasoning in the world of mathematical entities.  
In addition to this early history (which is not exhaustive regarding other civilisations, such as 
China, India, Central America, etc.) we should mention the success of the number for the 
needs of Physics, especially with Galileo (1620), the founder of classical Physics. Although it 
is more recent, this use of the number has nonetheless considerably marked the last four 
centuries, and it has contributed towards recognising the fact that, for both matter (physics) 
and space (geometry), the numerical representation of observations and the mathematical 
reasoning that accompanies it are “natural”, probably indispensable and extremely productive.   
 
We can also add that the mathematical development of physics has not gone unnoticed, and it 
is possible to write a parallel history for the mimetism of the human sciences regarding the 
recurrent use of the number. Leonardo de Vinci used the language of numbers for intellectual 
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operations a century before Galileo (Perse), while in the 18th century Cramer and Daniel 
Bernoulli formulated a model of the utility of money (Roberts). Wolff, one of Kant’s teachers, 
then wished to use the advantages of the number (Gusdorf), while Bonnet, the inventor of the 
short-lived “psychometre” built on the model of the “geometer” (Perse) after which, in the 
19th century, Jeremy Bentham developed his felicity calculus. Then came Auguste Comte, 
who created sociology, giving it its initial name of social physics; Fechner, who founded 
psychophysics, giving it an elegant ecumenical name, while Galton achieved as much for 
psychometry with terms very similar to those used by Wolff and Vinci, while also giving us 
the noun “psychometrician”. We can also go far back into antiquity and mention the myth of 
Tiresias the Seer of Thebes (present as early as the Odyssey) who did not hesitate to use the 
number to compare the intensities of two sensations, much to the displeasure of Hera.  
 
II.2 – The use of the number and the “number appeal”. 
The reader perhaps knows other examples of this recurrent use of the number. It has also been 
said that “the number permits discourse that goes beyond oral and qualitative expression” 
(Boudon). This mimetism of the numeric in these predominantly human disciplines could also 
be called “number appeal” to mark this regularly resurgent attraction and which leads directly 
to questions on the use of the number and the correction of the rules applied to it for such 
uses. 
 

An initial example of the assignment of numbers to things can be given by the use of numbers 
for the simple purpose of identifying the players of a football team and French “départments” 
(many others exist). In the former case, nobody would think of saying that a player with 
number 10 is five times better than that with jersey number 2; or that the department of the 
Gironde (33) is worth three times the Aude (11), or that the Pyrénées Atlantiques (64) is 
worth four times the Charente (16). Obviously, this type of use appears unthinkable, though 
since numbering is so widespread, the abusive use of the number and its poorly understood 
rules are often well hidden, laying traps for the unsuspecting. 
This also holds for the discipline of physics itself. In acoustics, for example, noise levels are 
expressed by numbers (in decibels), but one should not deduce from this that if two 
independent noise levels of 70 each are superposed, the result would be a level of 140. 
Indeed, if noise levels are quantified correctly, their definition does not correspond to a rule 
of addition vis-à-vis the numbers assigned to them (Maurin 1999, 2003 b). Furthermore, 
although every acoustician is aware of the fact, the statistical calculations of noise in the 
environment that are performed are often done so using software based on the addition of the 
numbers processed, and they are rarely programmed for other purposes. Likewise for 
calculations of pH in chemistry which have a formal mathematical status very close to that of 
levels (logarithms are used in both cases).  
 

 
III – Models and scaling. 
 

Strictly speaking, mathematics and physics are outside our scope, though it is important to 
examine their interactions when developing models. 
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III.1 – The zetetic approach to models. 
A model consists in producing a mathematical and numerical representation of the physical 
world (or more modestly a part of the world!), and to achieve this it gathers within the same 
set of relations the magnitudes that interact in a phenomenon observed. This developed after 
what could be termed the revolution of zetetic analysis introduced by Viète (1591), 
(Legrand). This entails representing known magnitudes by a literal symbol whose role is to 
represent a numerical value and also to include within the same relation symbols of 
magnitudes whose values are unknown by considering the problem as being resolved, and by 
applying to them the same calculation rules as for the symbols of known quantities, without 
distinction (the use of “indeterminates” dates back to Diophantes (Guilbaud), although they 
were integers or rationals). Technically, this then resulted in algebraic systems whose solu-
tions are the numerical values of unknown magnitudes. 
Literal symbolism is an essential convenience of algebraic symbolism that was taken up and 
perfected by Descartes to develop analytical geometry (1637), or the combination of 
geometry and algebra, which had been dealt with separately up to then. Physical modelling 
made use of this later on with the symbolisation of known and unknown values in the same 
equations. Shortly afterwards this approach and Descartes’ finite and deterministic vision 
were completed by the calculation of probabilities of Pascal and Fermat (1655), and the 
infinitesimal calculus of Leibniz and Newton (1680). Whatever the case, a step of numerical 
resolution must be added, using more or less sophisticated techniques that are now 
increasingly computerised. 
 
III.2 – The response of man and his numbering 
This approach was then taken up by the human sciences. Looking back once again to the 
classical world, one often hears repeated Protagoras’ aphorism stating that “man is the 
measure of all things”. We know that Protagoras was a leader of the Sophists and that this 
form of thinking can lead to many digressions, though here we take them literally by 
considering man’s response to the sensations and judgements to which he is subject. This is 
the case in particular when seeking to numerise and model man’s response. Three main types 
of model and numbering in psychophysics exist, in addition to Fechner’s preliminary foray, 
which remains largely tautological.  
 

a) The most immediate is the approach formulated by Stevens since it explicitly requires a 
numerical response to subjects by conforming to the rule of numerical proportions. This is the 
magnitude estimation method, and we know the success of this approach at the origin of 
Stevens’ Power Laws for sensation, (in this respect Tiresias was a precursor of magnitude 
estimation).  
a2) Stevens has less procedural successors (Gescheider), for example, the simple use of a line 
in a questionnaire demanding that the subject place a “tick” on it as a measure of the 
magnitude of the sensation they feel. Other protocols exist in which numbers can be noted 
directly though generally these remain rudimentary regarding the status and use of the 
numbers involved (Annett, Wang & Monnier).  
b) Another very widespread mode of response consists in asking subjects to answer by giving 
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preferences or by making binary choices between two simulations (in the broad meaning). 
This is the pairs comparison approach that can be modelled in order to calculate a numerical 
value for each stimulation on a common continuum, and, for example, there is Thurstone’s 
law of comparative judgments (Torgerson). 
c) When individual stimulations and their comparison become too numerous, a simplification 
is made by setting a scale of ordered categories of responses, the bounds being considered as 
dummy stimulations, and the stimulations are only compared in relation to these bounds. This 
is the idea behind Thurstone’s (and then Saffir’s) adaptation for developing the law of 
categorical judgments (Torgerson). 
 

These models and their associated numerical resolutions are a recurrent way of subscribing to 
number appeal and it can be added that in this case it is used as a springboard for the 
numerical relationship appeal in the well-known nomothetic approach of science. The idea 
and quest for a numerical correspondence between physical excitation and numerised 
response is one of the initial intentions of Fechner’s psychophysics while “nomothetic” 
features in Stevens (1971). 
 

III.3 - Scaling. 
Scaling consists in using this literal and algebraic approach to what appears to be the sole 
case of magnitudes in the human sciences, with different numerical and statistical calculations 
thrown in. It is perhaps a more accurate description of applications with a large number of 
variables as a function of adjustments, such as multidimensionnal scaling (Kruskal, Sheppard, 
Torgerson), whereas scoring better describes the modelling of a lower number of variables 
(Agresti). 
 

This is perhaps why the poet and thinker Paul Valéry said “Descartes is surely one of the men 
most responsible for the allure and physiognomy of the modern era, which is characterised in 
particular by what I would call the quantification of life” (Variété, quoted by Diéguez). After 
such a declaration, Descartes finds himself involved in the vertigo of number appeal in the 
life sciences, whereas he used analysis only in the sciences of matter and space. However, it 
is true that Viète and Descartes opened the way to the formulation of mathematical models 
including unknowns in a literal form within reach of numbers. 
 

III.4 – Numerical assignment and the questions it raises. 
The consequence of the previous reminders is that the number is firmly fixed in the history of 
humanity and its vision of the world, and it has developed myriad techniques in many fields 
to assign numerical values to objects, entities and other observations. The zetetic and 
algebraic process was justified when applied to geometric and physical magnitudes whose 
existence was almost certain, but its success and the habitual use of this practice has perhaps 
blunted caution as to the pertinence of its use in other disciplines, making way for a certain 
amount of mimetism. Moreover, one may wonder in passing whether calculations made using 
numbers and symbols to represent all kinds of magnitudes do not result in endowing them 
with legitimacy. Is not the inclusion of these magnitudes a means of bending a method to 
one’s purpose by lending it substance through numbers? What is more, isn’t this a kind of 
inversion of the relationship between existing magnitudes and images made mathematical? 
And doesn’t this now risk being amplified by the development of statistical processes on the 
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one hand, and by software on the other, of new machines for crunching numbers though 
which hardly give the impression of questioning their status. Some may occasionally fear that 
computer processes inhibit (or flatter) the new form of scientific spirit of our times. 
 

Since the pressure related to assigning the number to different magnitudes and its use in 
scientific discourse is obvious, this exposé is an opportunity for recalling the necessity of 
conforming to meaningful syntax during the many discourses given in the framework of the 
numerical universe. 
 
IV – The measurement theory. 
 

The theory of measurement essentially dates from the second half of the 20th century. It 
revigorates numerical assignment and responds to the previous questions on scaling. Indeed, 
it first ensures that numerical representations exist instead of simply postulating them by way 
of literal algebraic symbols, and to do this it relies on the qualitative and consequently pre-
numeric examination of data ei of a group E of observations.  
 

IV.1 - Representation. 
a) Qualitative examination consists in identifying the possible particular relations (qualitative, 
ensemblist) manifested by these data, as do, for example, relations of order between 
observations, judgements, preferences, and rules of composition when two observations can 
be assembled (which can lead to a homomorphic rule with addition), etc. They are formalised 
by binary relations R(j) and the ensemble E = {E, R(j)}  constitutes an ERS, (empirical 
relational system). 
 

b) It then entails finding a homomorphic structure in the range of mathematical structures, 
that is to say an ensemble of points or formal elements that verify relations that are 
homomorphic or of the “same kind”. This structure is called an NRS or numerical relational 
system, and it entails establishing a correspondence µ between the two relational systems. 
This is the object of a theorem of representation, that is to say the existence of a 
representation, in the same way as theorems of existence exist in mathematics (solutions of an 
algebraic equation, a differential equation, a functional equation, and so forth). Thus 
correspondence exists when the relations of the ERS are effectively verified, and the 
verifications can be made on observing data ei. 

 
 
 µ

e i1 

e 
ik 

E 

R

g

Figure 2, homomorphism between ERS and NRS of real number R  
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c) When the NRS is the line R of the real numbers, we are sure of the existence of a numerical 
representation µ(ei) of the initial observations with what is called a scale of measurement. It 
should be noted that when a correspondence exists, it conforms to the all the qualitative 
relations observed on the data by its construction (Roberts, Suppes & Zinnes). 
 
IV.2 – Characterisation of the scale, the uniqueness. 
When demonstrating existence, we often obtain several representations that respond to the 
question. In the simplest cases, if µ is a correspondence that responds to the question, 
composition g o µ is another with a transformation g of R onto R which belongs to a sub-
group G of transformations (thus considered permissible), and the scale of measurement is 
characterised by G. The most usual cases are listed in the following table and are types of 
scale known elsewhere, especially since the psychophysicist Stevens (Roberts). However, 
here they are introduced according to the logic of representations of measurement and their 
characteristics. (There is also the more complex case where the correspondences µ are listed 
without the presence of a sub-group and its action on correspondences µ). 
 
 Sub-group G of transformations type of scale  
 --------------------------------------------------------------------------------------- 
 identity, neutral element of G absolute scale  
 g(x) = c x ,  c positive ratio scales (cardinal) 
 g(x) = c x + b ,  c positive interval scale (cardinal) 
 g increasing ordinal scale  
 g bijective nominal scale  
 

                   table 1,  the main types of scales characterised by a sub-group  
                                        of permissible transformations. 
 
IV.3 - The meaningfulness of numerical statements. 
Naturally, we formulate numerical images µ(ei) to express results with these numbers, and 
these statements are used as the basis for developing the notion of meaningfulness. A 
statement comprising numerical values is considered meaningful if it remains invariant vis-à-
vis the action of transformation g characterising the scale (the transformations introduced for 
the uniqueness). For example, the relation of the order µ(ei) > µ(ek) is meaningful for any 
ordinal, interval and ratio scale; however, statement µ(ei) = 3 µ(ek) does not remain invariant 
for interval and ordinal scales. 
Meaningfulness extends to statistical treatments and the statements that use them. For 
example, the arithmetical average has a meaning for values measured on interval and ratio 
scales but none for ordinal scales, although the median is meaningful for the three types of 
ordinal, interval and ratio scale. 
 
IV.4 - Other developments. 
a) Numerical values as such are only useful if the correspondence µ on which one is working 
is specified in full. This can lead to questions to resolve more classical numerical systems, 
such as for scaling (Coombs Dawes & Tversky). 
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b) The presentation above is implicitly oriented towards the fact that observations ei of E 
belong to a univariate ensemble, for example sensations that rely only on one magnitude of 
sensation. However, this theory has also moved rapidly towards the “conjoint measurement” 
of observations belonging to E ensembles having a bi- or multivariate structure, such as 
exposures to two independent stimulations with which it is possible to compare (at the level 
of the pre-numerical relations of ERS) combinations of multiple exposures, mainly with 
preferences between situations combined ad hoc. Once again, sets of measurement conditions 
permit the formulation of measurement scales (existence and uniqueness) for each of the 
univariate dimensions that subtend the multivariate structure of the data (Pfanzagl, Roberts). 
This is the extension that has given rise to considerable refinements since the additive 
conjoint measurement of Luce and Tuckey, (Bouyssou & Pirlot). 
 

c) The presentation of measurement became more refined in the sixties (Roberts, Suppes & 
Zinnes). The essence of this approach lies in the effort made to ensure the existence of a 
numerical representation, in view of qualitative, ensemblist and relational conditions of data. 
These conditions are also called measurement axioms. It should be noted that the theorems 
remain in the realm of theory while the verification of axioms is done very practically on the 
level of data and observations.  
 

Regarding this it rapidly became clear that data were contaminated by fluctuations (like all 
observations in practice). The result of this is that conformity with these conditions to 
establish a theorem of existence is too rigid, since the conditions cannot take these 
fluctuations into account. Another result is that scales can exist whatever the case, although 
they are hidden by noise. 
 

It was to solve this difficulty that shortly afterwards the notion of Probablistic Measurement 
(Falmagne 1976) was introduced. In substance this is the probabilistic transcription of axioms 
with statistical reasoning in order to admit the hypothesis that a scale of measurement exists 
in spite of non-conformity, in the strict meaning of the term, with axiomatic conditions. It was 
seen that probabilistic measurement could be applied well to the type of data collected in the 
Human Sciences, with responses in many areas (Luce & Suppes) that are often data in binary 
or categorical form, § III.2, (Falmagne 1978 a and b, Hamerle & Tutz, Mausfeld). 
 
Thus it can be seen that the theory of measurement is above all devoted to the existence of a 
numerical representation that conforms to the qualitative properties explicated by the 
observation of data. Naturally, the sciences of matter and space, which have circumscribed 
and targeted their magnitudes with scientific consensus, are not concerned; however this 
exigency of the existence of representation allows other disciplines to join the march towards 
the number (evidently, if necessary), without succumbing to the excesses of number appeal. 
 
 
V – Successive intervals. 
The theory of measurement has good applications in psychophysics (Falmagne 1985, 
Roberts). We shall continue in the framework of human response according to a scale of 
ordered categories, § III.2.c, and present an appropriate method called the successive interval 
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method. 
 

V.1 – Categorical responses. 
The people questioned are subjected to different stimulations noted si for an index i from 1 to 
I, and they must respond as a function of a scale of ordered categories Cj for j from 1 to J; 
number J is fixed by the operator and is generally from 4 to 11, without forgetting the 
“magical 7”, (Miller). Under these conditions it is possible to collect data in the form of a 
contingency table with the categories of response at the heads of the columns, the stimuli at 
the beginning of the line, and the different numbers nij of persons that respond Cj when 
subjected to exposure si, (table 2).  
 
It is very usual to use a single numerical value cj for each category Cj in multidimensional 
scaling applications, or in a more artificial way to take cj as being equal to rank  j of the 
category in the scale. The comment “to the theorist, however, the whole business is a bit hair-
raising, ..., because there is nothing about the procedure to prevent one from labelling the 
categories by any other increasing sequence of numbers”  (Luce & Galanter) has not sufficed 
to stem the success of these methods. 
 
 
  C1 C2 Cj CJ 
   ----------------------------------------------------------------------------------------------------------------------------- 
 s1 
   ----------------------------------------------------------------------------------------------------------------------------- 
 
   ----------------------------------------------------------------------------------------------------------------------------- 
 si nij ni+ 
   ----------------------------------------------------------------------------------------------------------------------------- 
 
   ----------------------------------------------------------------------------------------------------------------------------- 
 sI 
   ----------------------------------------------------------------------------------------------------------------------------- 
 n+j  
 

Table 2,  the contingency table of responses in {Cj, si} 
 
V.2 – A mode of representation by intervals. 
An essential change of view consists in representing each category by an interval between 
two bounds [tj-1, tj]. This representation naturally conforms more to the nature of the 
categories and is that used by Thurstone for categorical judgements.  
 

Furthermore, in a general way Thurstonian approaches (§ III.2.b et c) consider the response to 
a stimulation si as a random variable Si. In the paired comparisons the preference of si to sk is 
modelled by the probability of the event {Si - Sk ≥ 0}. In the categorical judgements random 
variables Tj are introduced for the bounds, and response Cj when exposed to si is modelled by 
the probability of the event {Tj-1 ≤ Si ≤ Tj}, (Maurin 2003 b, Torgerson). The psychophysical 
model uses normal laws for the random variables Si and Tj (normal laws constitute one of the 
very rare technical occasions where one knows how to calculate the probability of events {Si 
≤ Tj}). 
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V.3 – The measurement of scales of categories. 
The application of measurement of this type of response is due to Adams and Messick in 
1958, and is known as successive intervals (Adams & Messick, Maurin 1986 b, Suppes & 
Zinnes). It is presented in the form of several steps. 
a) Firstly, Adams and Messick took another technical option for the laws of random variables. 
On the one hand the centred variables (Si - µi)/σi reduced by µi = E(Si) and σi

2 = var(Si) obey 
a common law as a function of the normal F distribution or not, and on the other hand Tj 
obeys Dirac’s discrete distributions in tj. This is another option with which it is also possible 
to explain probability pij of {Si ≤ Tj}, this event becomes {Si ≤ tj} and we obtain pij =  
F((tj - µi)/ σi), (see Figure 3).  
 

b) Adams and Messick then observed that zij = F-1(pij) = (tj - µi)/ σi  verifies a system of 
relations of the form  
                       zkj = akl zlj + bkl                                                                      [CAM]    
with positive coefficients akl for any pair of indices of rows l, k =1,..., I  and columns j, (by 
taking t0 = -∞ and tJ = ∞). Regarding the table of data zkj  this results in the verifiable fact that 
we pass from any row k to any other row of index l by a positive linear transformation that 
depends only on indices k and l.   

 
 

homomorphism

probability density 

1/ σ i   f((t- µ i )/σi )  for S i 

t 1           t 2                                                     tj-1        tj                     t J-1 

t 0  = - ∞ t J  = ∞ µi

C 1             C 2            …                 Cj                 …                        CJ

 
 

Figure 3, the numerical mode of representation of successive intervals.  
 
c) Relations [CAM] are equivalent to pij = F((tj - µi)/σi) but they are expressed intrinsically 
with only pij and zij without using or mentioning representations µi, σi and tj of stimulations si 
and categories Cj. Adams and Messick used these relations as an empirical relational system 
in the table of pij (or their transform zij), and by starting out from [CAM], they established a 
theorem of representation that demonstrates the existence of µi = µ(si) as a measurement scale 
of the stimuli, and the existence of tj as the second scale for the bounds of the intervals. They 
also established a theorem of characterisation to show that it is these two interval scales that 
undergo the same transformation of the sub-group of positive linear transformations. 
 
d) The data are the numbers nij of the contingency table and we calculate the empirical 
cumulated frequencies qij = (∑r=1…j nir)/ni+  of the responses in the combination of categories 
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C1 U… U Cj for each si, (with ni+ = ∑r=1…J nir). The qij are the estimators of pij and it is with 
them and the transforms ze

ij = F-1(qij) that we must evaluate relations [CAM] or the simplest 
equivalent relations ze

ij = ai tj + bi with ai = 1/σi et bi = - µi/σi . Naturally, following the 
theoretical considerations on the pij, it is now necessary to present a function of distribution F 
for the evaluation.  
 

e) We know that data, and thus here ze
ij, are generally subject to disturbance and that they 

cannot verify the equivalent relations of [CAM]. Therefore it is necessary to apply a 
probabilistic measurement technique (Maurin 1986 b). On the theoretical level we have 
developed a hypothesis test to accept the hypothesis of a measurement scale, and on the 
practical level, when the hypothesis is accepted, the ze

ij = ai tj + bi form a system with 2I + J-1 
unknowns ai, bi, tj , and relations I (J-1), to which two additional conditions must be added to 
set the coefficients of the common interval scale.  
This system is overdetermined as soon as (I-1) (J-3) is positive, which is always verified in 
practice with two stimulations or more and four categories or more, and cannot be used 
directly for a numerical resolution. Thus we set the term sum of squares errors   
                    QF = ∑ij {ze

ij - ai tj - bi}
2  

which is identically null under conditions [CAM] for ze
ij, and in the presence of noise in the 

data it is possible, classically, to seek the values of ai, bi and tj for which QF is minimal (as 
has been done already for the law of categorical judgements, § V.2, Torgerson). 
 
f) When implementing successive intervals the choice of law F and the optimisation of QF are 
done together. To do this we simply repeat the minimisation for several laws and use that 
which leads to the lowest minimum.  
In practice, we limit ourselves to four relatively classical laws with the normal law, the 
logistic law FL(x) = 1/(1 + e-x), and two dissymmetrical laws to cover the largest possible 
number of situations, the law of extremes of Fréchet, Fisher and Tippett with FFFT(x) = exp(-
e-x), and the law obtained by changing the sign of the law of extremes with F-FFT(x) = 1 - 
FFFT(-x). 
 
V.4 – Numerical assignment and the relational consequences. 
The successive intervals are located at a point of convergence between the measurement and 
the psychophysics of the categorical responses (figure 4), and when the measurement 
conditions are accepted this technique is constructive and provides numerical values µi = - 
bi/ai et tj.  
 

Consequently, it also almost immediately resolves the relation concerned at the origin of the 
psychophysics. Indeed, each physical stimulation is defined by an intensity xi in its physical 
unit. Therefore, knowing the numerical measurement µi of any si  the ensemble of pairs {µi , 
xi} permits explaining a correspondence between magnitude x and numerised response µ. 
This corresponds exactly with the notion of the “dose-response” or “stimulus impact” curve 
between the physical magnitude and the human magnitude, as do Fechner’s and Stevens’ 
laws, and simple linear regressions with the artificial numberings mentioned. 
  

The relation between the stimulation and the numerised response draws advantage here from 
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the properties of the successive intervals; in particular the differences ∆µi,i+1 = µi+1 - µi are 
measured on a ratio scale, they are comparable with each other and permit observing the 
relation’s monotony (increase or decrease) as well as variations of monotony with ratios of 
increase ∆µi+1,i+2 / ∆µi,i+1 in comparison with the unit. 
 
Consequently, successive intervals are an interesting method with a wealth of properties 
based on a simple and widely used method of collecting responses. In particular it provides 
new possibilities in environmental research to establish the transformations between the 
magnitudes of sources of nuisance and the magnitudes of impact on the population (Maurin 
2003 a). This simply requires the collection of responses with scales of ordered categories. 
Furthermore, the calculation algorithm is simple to use. 
 
V.5 – Multidimensional pursuits. 
It should be noted that the theorems of Adams and Messick do not make any specific 
hypothesis on the algebraic structure of stimuli si, meaning that the stimulations studied have 
a multivariate algebraic structure, with for example a multiple index s{i1,i2,…,ir}. The resulting 
numerical measurement is itself multivariate µ{i1,i2,…,ir} = µ(s{i1,i2,…,ir}) and it is possible to 
start a simultaneous measurement approach based on successive intervals (Maurin 1986 a, 
Maurin 2001). 
 
 

Successive intervals,   
Adams’ and Messick’s conditons 

Theory of 
measurement 

psychophysics,   
categorical scales,   
categorical judgements 

numercal response   µ i =  µ (s i)

yesno 

X 
 

 

Figure 4, Successive intervals, at the crossroads of psychophysics and measurement.  
 
V.6 - Examples.  
Studies on the impact of nuisances and comfort often use responses by categorical scales. 
 

a)  During a national survey on nuisances, we collected data on annoyance due to daytime 
traffic noise on a scale of 4 categories and measured the building frontage noise levels of the 
persons questioned (a sample of 375 people). The index of the noise used is the equivalent 
level Leq from 8 a.m. to 8 p.m. which varies from less than 48 dBA to more than 72 dBA 
(Maurin 2003 b). Since there were few responses in the “annoyed” and “very annoyed” 
categories for levels lower than 55 dBA, the sections of low levels are grouped together and 
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the final table has seven lines corresponding to exposure values classified by sections of 3 
decibels, and four columns for the scale of responses (table 3). 
 
The use of successive intervals gives the numerical values µL(Li) that are then calibrated by 
taking µL(L1) = 1 and µL(L7) = 7. The minimum of QF is obtained with function F-FFT; the 
correspondence chart (figure 5) shows a progression of annoyance that accelerates up to 66 
decibels A, with a slowing down of increase and a form of saturation beyond this level. 
 

The data fit with the model of successive intervals satisfactorily. However, this is not always 
the case. For example, the same scale of response in four categories was proposed for 
annoyance felt at night time at the same time as we measured a nocturnal noise index. 
However, the measurement axioms are not verified on the resulting contingency table.  
 
 
 under  55 

dBA 
56-58 59-61 62-64 65-67 68-70 over 71 

dBA 
not annoyed  72 46 48 36 24 15 15 
slightly annoyed 7   8   8 10 12 10   6 
annoyed 1   2   7   9   8  4   7 
very annoyed     3   2   6  4   5 
 

        table 3, the daytime annoyance-noise contingency table (transposed table); the 
optimisation algorithm used adapts to the null values. 
 
b) Regarding the comfort of an automotive pedal, we collected a sample of 445 responses on 
a scale of 4 categories as a function of four factors (each with five modalities): seat height, 
travel, pedal angle and resistance (Wang & Maurin). Thus we have four contingency tables 
with five lines and four columns, with for each the possibility of establishing a 
correspondence between the modalities of a factor and the numerised subjective response. 
 
 
seat 
height, 
mm 

C1 C2 C3 C4  Pedal, 
travel, mm

C1 C2 C3 C4 

200 9 11 7 3  100 0 1 8 21 
250 3 24 46 45  118 1 20 53 44 
300 2 41 59 46  132 4 45  56 28 
350 5 37 58 19  152 7 41 51 20 
400 9 11 6 4  170 16 17 8 4 
 

      Tables 4, contingency tables of height-comfort and pedal travel. 
 
The relations [CAM] are accepted while the minima are calculated here using the normal law; 
two factors show a decreasing curve (pedal travel and resistance) and two show a parabolic 
shape with a maximum (seat height and pedal angle). It is also possible to calibrate 
measurements µh(hi) and µc(ci) on the same interval scale which gives the same numerical 
axis for the ordinates (figures 6). 
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During this study we also sought to compare the results opposite with those obtained when 
taking raw ratings from  0 to 10 with much more rustic numbering. The comparison shows 
that the successive intervals  lead to finer and more satisfactory interpretations of results. 
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Figure 5 Numerical correspondence between noise levels and annoyance µ 
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Figure 6 Numerical correspondences between physical factors and comfort µ  

 
VI - Conclusions. 
Here, we can quote Largeault “When describing, one uses a language, a natural language 
completed or not by mathematical or physical symbols”. It is not our purpose to dictate a 
language of number in results or plead for such an aim, but it is vital to be aware of the fact 
that if one uses the number at a given moment, it cannot be done approximately or carelessly 
with any seriousness. Obviously, care must be taken with the quality of the numbers 
introduced and the syntax used in the same way as with the grammar of natural languages.  
The theory of measurement permits in particular controlling number appeal and the various 
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temptations it holds, that sometimes beckon the credulous. This theory provides a certain 
epistemological renovation in how to explain numerical laws correctly. This seems an 
appropriate place to quote Rabelais’ aphorism that “Science without conscience is but …” 
whose sting is known by all (*) and refer to it without succumbing to the spell of these 
appeals.  
 

To end, it should be noted that the extent to which the measurement of successive intervals, 
among the different methods of collecting responses, endows scales of ordered categories 
with properties useful in the quest for meaningful numerical and relational methods. 
 
VII – Appendix 
As a continuation for a never ended story, we may signal the recent introduction of what is 
called the “fuzzy logic” implying fuzzy numbers and fuzzy algebra, (1965 for instance). Some 
years after, other new theories such as evidence theory and possibility theory have been 
developed, in a sort of generalisation of statistics and probability theory for events. All of 
these new considerations are intended to allow better approaches to handle both imprecision 
and uncertainty (Bouchon-Meunier). In a next future, after some time for a maturation period 
and a golden age for “fuzzy advancements”, we may imagine the coming of a fuzzy 
measurement enlarging the numerical assignment framework, figure 7. 
 

 
Figure 7, a succession of steps for the measurement approach 

                                                 
* “…the ruin of the soul.” 

- 1655  Pascal and Fermat, 
the probability theory 

- 1955-65 
 
- 1965 Zadeh, ‘fuzzy » logic numbers 
 
- 1976 Flamagne 
 
- 1978 Zadeh, the possibility theory      
associated to fuzzy methods and tools 
 

1 – measurement theory 

2 – the probabilistic  measurement 

3 – a coming fuzzy measurement… 

3000 years and 
more… 

# 300 years 
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