
Road Infrastructure ready for mixed vehicle traffic flows

Ioannis Papamichail
Dynamic Systems and Simulation Laboratory
Technical University of Crete

austriatech

SIEMENS
Ingenuity for life

virtual vehicle

AISFINAG

autopistas
an Abertis company

enide

Fraunhofer
FOKUS

TOMTOM

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

Outline

- 1) INFRAMIX project overview
- 2) INFRAMIX objectives
- 3) INFRAMIX project facts
- 4) Traffic scenarios & Use cases
- 5) “Hybrid” road infrastructure
 - a. Physical
 - b. Digital
- 6) Evaluation
- 7) Highlights
- 8) Keep track on INFRAMIX

INFRAMIX project overview

The main target of INFRAMIX is to **design, upgrade, adapt** and **test** (in simulation and in real-world) both **physical** and **digital** elements of the **road infrastructure**, to enable the coexistence of automated and conventional vehicles, ensuring an **uninterrupted, predictable, safe** and **efficient** traffic.

The key outcome will be a “**hybrid**” **road infrastructure** able to handle **the transition period** and become the basis for **future automated transport systems**.

INFRAMIX objectives

- Design new and upgrade existing **physical & digital road infrastructure elements**
- Design **novel signaling** and **visualization elements**
- Design and implement **novel traffic estimation, monitoring** and **control strategies**
- Develop a **co-simulation environment**
- Develop **hybrid testing system**
- **Evaluate user's appreciation** and **acceptance**
- Evaluate **traffic safety**
- Create a **Road Infrastructure Classification Scheme**

INFRAMIX project facts

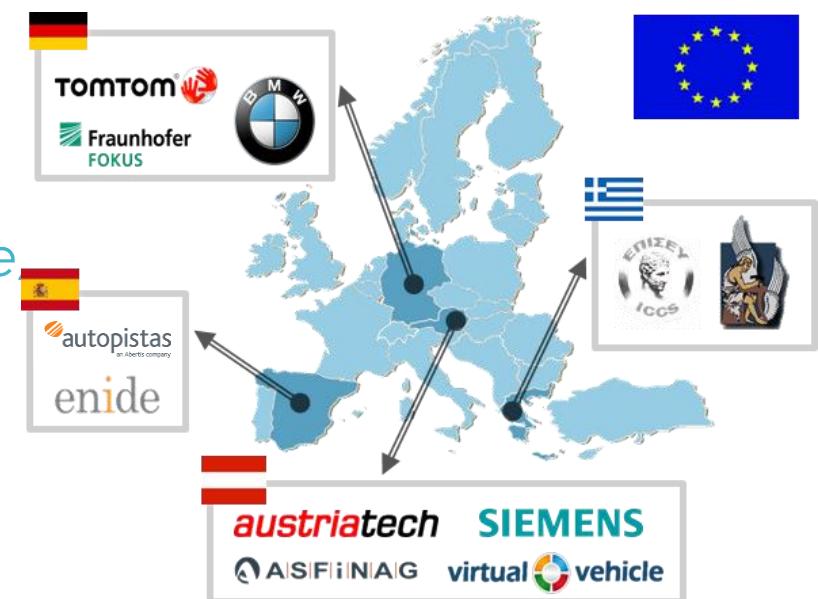
Duration: 1 June 2017-31 May 2020

EC Funding: 5M €

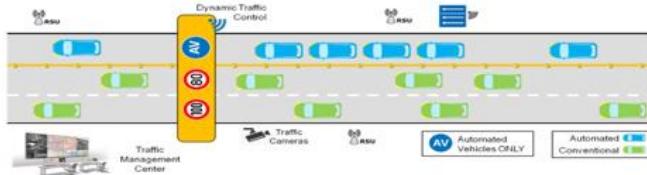
Coordinator: *Austriatech*

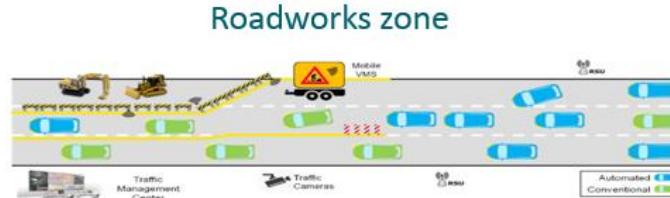
Consortium: *Austriatech, ICCS, Asfinag, Fraunhofer, Siemens, Virtual Vehicle, Autopistas, Enide, Technical University of Crete, TomTom, BMW*

Website: <https://www.inframix.eu/>

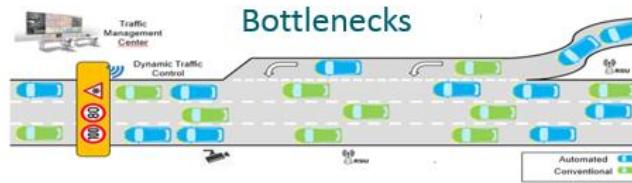

Social media:

@inframix


inframix project


Traffic scenarios & use cases

Three traffic scenarios under investigation :


Dynamic lane assignment to automated driving

Roadworks zone

Bottlenecks

Selection criteria:

- expected **impact on traffic flow**
- expected **impact on traffic safety**
- importance of **the challenges faced**, in the sense that if not handled in a proper and timely way, they will negatively **influence the introduction of automated vehicles on the roads**
- ability to **generalize on the results** (applicable in other scenarios and environments)

Traffic scenarios & use cases

Scenario 1: Dynamic Lane Assignment (incl. speed recommendations)

1. Real time lane assignment under Dynamic Penetration Rate of Automated Vehicles (AVs)
2. Exceptional circumstances e.g. adverse weather conditions
3. A conventional vehicle drives on a dedicated lane for AVs

Scenario 2: Roadworks zones

4. Roadworks zone in mixed traffic – Single Lane Closure
5. Roadworks zone in mixed traffic – New lane Design

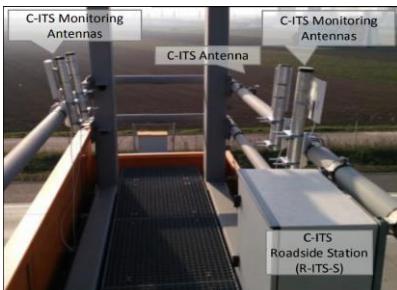
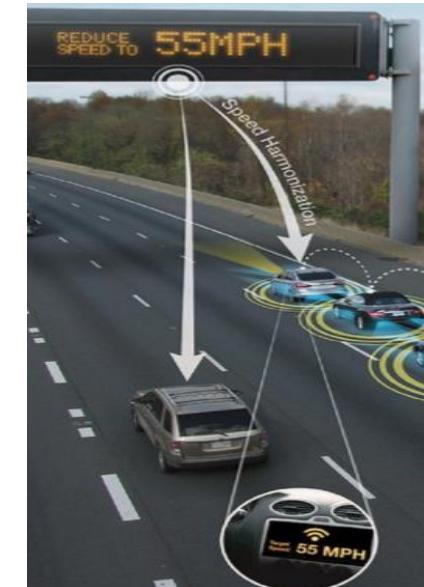
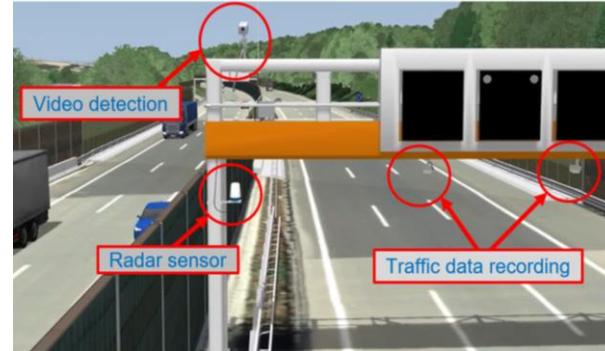
Scenario 3: Bottlenecks

6. AVs Driving Behaviour Adaptation in Real Time at Sags
7. Lane-Change Advice to connected vehicles at Bottlenecks
8. Lane-Change Advice combined with Flow Control at Bottlenecks for all vehicles

“Hybrid” road infrastructure

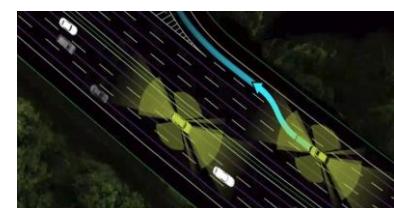
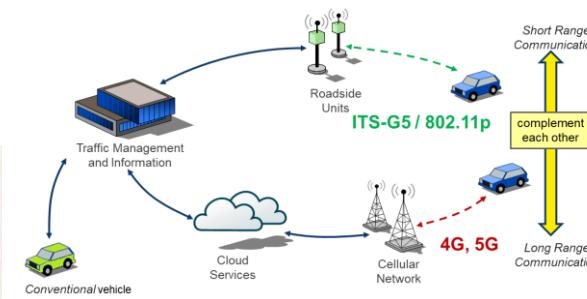
“Hybrid” road vision: a road infrastructure consisted of physical and digital infrastructure elements able to cope efficiently with the new safety challenges emerging from the introduction of automated vehicles.

Especially important to support the transition period and mixed traffic scenarios:




- Extend the electronic horizon of automated vehicles
- Facilitate the co-operation between different types of vehicles with different capabilities (manually driven, connected, automated – different levels of automation)
- Manage and control traffic in a safe and efficient way
- Provide consistent electronic and visual signals for all types of vehicles

“Hybrid” road infrastructure

Physical road infrastructure



- Visual and electronic signaling to inform and guide both conventional and automated vehicles
- Road side elements and related upgrades of today Traffic Management Centers (TMCs).

“Hybrid” road infrastructure

Digital road infrastructure

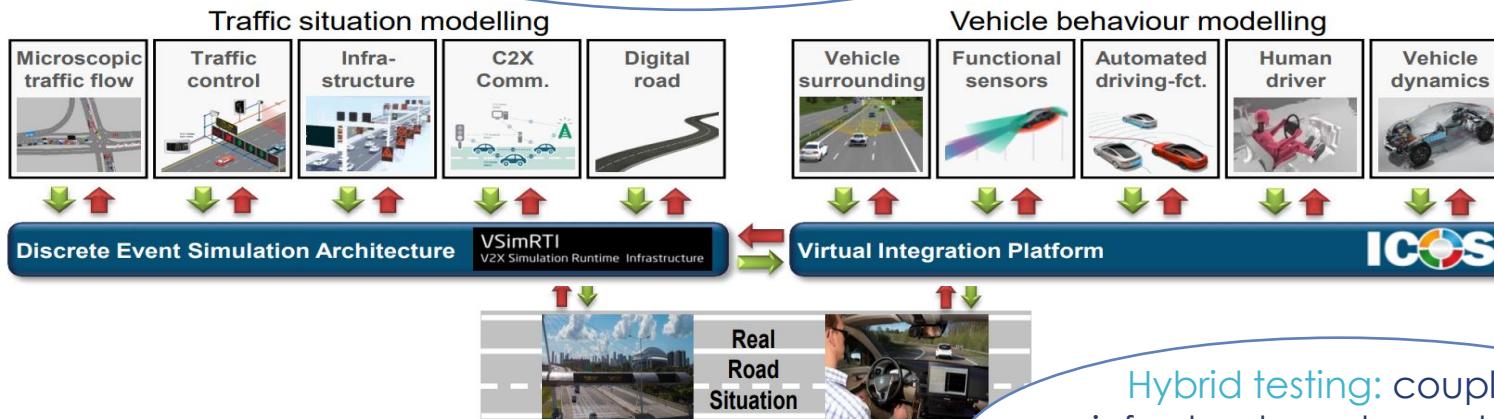
- Highly accurate digital maps
- Traffic flow estimation methods for mixed traffic
- Investigation of different novel traffic management architectures and combinations
- Individualized speed and lane recommendations
- Definition of dedicated ITS specific messages
- Usage of short range (e.g. ITS-G5, WiFi) and long range (cellular) communication

“Hybrid” road infrastructure evaluation & optimization

Real tests in modern highways

Girona,
Spain

autopistas
an Abertis company



ASFINAG

Gratz,
Austria

Co-simulation environment:
combines the modelling of
the vehicle behaviour with
the traffic simulation

Hybrid testing: coupling
infrastructure elements and
vehicles on real roads with
virtual traffic environment

Road infrastructure classification scheme

Overview:

- The classification scheme is based on a set of attributes / indicators which signify whether the specific infrastructure matches the requirements of different levels of automated vehicles (e.g. L3 or L4/L5)

Objective:

- To highlight the connectivity and automation capabilities of the infrastructure and its ability to manage the circulation of vehicles of different levels of automation

Targets:

- Indicate the infrastructure connectivity, automation capabilities, capability to host vehicles of different levels of automation and connectivity.
- Provide dynamic classification—under certain conditions (e.g. an incident, extreme weather conditions) the circulation of automated vehicles will be affected
- Consist a guide of how to incrementally upgrade levels of infrastructure to avoid stranded investments.

Highlights

- 1) INFRAMIX (H2020 project) prepares road infrastructure for **mixed traffic** and aims to influence community and stakeholders through **Infrastructure classification scheme**
- 2) Provides a **simulation platform** and **hybrid system testing** of high value for future research
- 3) Implements **novel traffic monitoring and control**
- 4) **Evaluates users appreciation** and **traffic safety** in mixed traffic through **dynamic lane assignment**, **roadworks zones** and **bottlenecks** traffic scenarios.
- 5) Propose **new traffic signaling** for the needs of mixed traffic
- 6) Propose **extensions to V2X** communication **standardization** bodies

Keep track on INFRAMIX

- Website: <https://www.inframix.eu/>
- Twitter: @inframix
- LinkedIn: inframix project
- Sign up to our newsletter:
<https://lists.inframix.eu/wws/subscribe/news>
- Contact us:
Project coordinator : Martin Dirnwöber
martin.dirnwöber@austriatech.at
Dissemination Manager: David Quesada
david.quesada@enide.com

Thank you for your attention!

Ioannis Papamichail

email: ipapa@dssl.tuc.gr

**Dynamic Systems and
Simulation Laboratory**

Technical University of Crete

This project has received funding from the European Union's
Horizon 2020 research and innovation programme under
grant agreement No 723016.